ABLATION OF PULMONARY TUMORS

Hans Henrik Torp Madsen, Department of Radiology, Aarhus University Hospital, Denmark mail: hansmads@rm.dk

Thermal ablation

- RFA -MWA -CRYOABLATION

THE LUNG IS A PERFECT ORGAN FOR THERMAL ABLATION: RFA, MWA AND CRYO-ABLATION

- HEAT: HIGH HEAT INSOLATION ENERGY STAYS INSIDE THE
 TUMOR
- COLD: INDUCED EDEMA AND HEMORRHAGE IMPROVE ICE FORMATION.

DEMANDS TO ACHIEVE TUMOR CONTROL IN THE TUMOR BED.

1. Total necrosis of the ablated area

 Inclusion of microextensions of tumor cells in the periphery, (safetyzone)
 Strict patient selection

ACHIVEMENT OF TOTAL ABLATION NECROSIS

FACTORS IMPORTANT FOR CELL DEATH:

- TEMPERATURE, ABOVE 60 C CELLS WILL
 DIE
- HOW FAST CAN THE RISE IN TEMPERATURE
 BE ACHIEVED
- IN MWA ENERGY CAN BE DELIEVERED
 DESPITE CHARRING AND VAPORIZATION
- MWA COAGULATES VESSELS UP TILL 5 MM RFA UP TILL 3 MM TO REDUCE THE HEAT SINK EFFECT.

RADIOFREQUENCY-ABLATION

PROXIMITY TO VESSELS > 3 MM LARGER AIRWAYS

The principle of Radiofrequency ablation is a rapidly alternating current (4-500 kHz) between the probe positioned in the tumor and a grounding pad. Frictional heat is created by ionic agitation and a temperature above 60 C will cause cell death

IMPORTANT: THE TISSUE HAS TO BE ABLE TO CONDUCT CURRENT. **110 C, VAPORIZATION** – act as electrical insulator

90-95 C CHARRING – act as electrical insulator

60 C CELL DEATH

37 C BODY TEMPERATURE

MICROWAVE-ABLATION

A microwave antenna applies electromagnetic energy to the tissue.

Water molecules are bipolar and will allign to the magnetic field and flip the molecules forth and backwards 2-5 billion times a second (915 or 2450 MHz) producing heat by kinetic energy.

Advantages: No limitations by charred or desiccated tissue nor to vaporization Coagulates vessels up till 5 mm Fast, normally 2-10 minuttes.. 100% necrotic ablation zone

THE MAGNETIC FIELD IS INITIATED FROM THE FEEDING POINT, PROPAGATES FORWARD TO THE TIP AND THEN BACKWARDS

CRYOTHERAPY

At -20°C cells are killed by protein denaturation and membrane disruption. Cooling down and thawing 3 cycles, example: freeze: 5+10+10 min.

<u>Direct actions</u>: Repetitive freezethawing cycles increases cellular injury with formation of intra- and extracellular ice crystals.

Indirect actions: vasoconstruction and occlusion of blood vessels, secondary occlusion of vessels, osmotic changes and local tissue edema

Result: hypoxic tissue injury and coagulation necrosis

Benefits:

Preserves collagenous architecture Seems to reduce complications in areas of previous radiation May result in less pain in tumors along the pleura Draw backs:

more expensive and time consuming Increased risk of hemorrhage Increased risk of pneumothorax if multiple neddle placements Increased risk of recurrence when a vessel >3 mm is 3 mm or less from the tumor border.

DEMANDS TO ACHIEVE TUMOR CONTROL IN THE TUMOR BED.

 Total necrosis of the ablated area
 Inclusion of microextensions of tumor cells in the periphery, (safetyzone)
 Strict patient selection

PRIMARY VS. SECUNDARY LUNG TUMOR

PRIMARY LUNG TUMOR:

SQUAMOUS CELL TUMOR: MICROEXTENSIONS UP TILL 0,6 CM FROM THE TUMOR BORDER

ADENOCARCINOMA: MICROEXTENSIONS UP TILL 0,8 CM FROM THE TUMOR BORDER

METASTASIS:

NORMALLY ONLY TUMOR CELL EXTENSIONS TOWARD THE BRONCHUS

CHALLENGE IN COVERAGE

MWA AND RFA

CRYO

MWA AND RFA

Options:

1. Reposition of antenna (challenge with geometry)

2. Cluster technique seems not to be suitable in the lungs due to risk of pneumothorax and atelectasis. In actelactasis the size of necrosis is unpredictable.

© Turkish Society of Radiology 2018

INTERVENTIONAL RADIOLOGY

ORIGINAL ARTICLE

A comparison between 915 MHz and 2450 MHz microwave ablation systems for the treatment of small diameter lung metastases

Thomas J. Vogl* Andrei Roman* Nour-Eldin A. Nour-Eldin Wolfgang Hohenforst-Schmidt Iliana Bednarova Benjamin Kaltenbach

TUMORS: 55 PATIENTS: 36 FOLLOW-UP

Figure 2. Local progression-free survival rates. Fewer local progressions can be observed for the HF group.

LF, MEDIAN: 13.8 MONTHS (3-45.7) HF, MEDIAN: 11.7 MONTHS (3-28.8) TUMOR SIZE LF: 1.0±0.4 CM (0.3-2.5 CM) HF: 1.1±0.6 CM (0.4-2.56CM)

SAFETY ZONE.

LF NO LTP:	0.6±0.2 CM
LF WITH LTP:	0.3±0.2 CM
HF NO LTP:	0.9±0.4 CM
HF WITH LTP:	0.6±0.1 CM

6, 12 AND 18 MONTHS LTP FREE SURVIVAL LF: 79%, 65.2%, 53% HF: 97.1%, 93.7%, 58.4%

2nd generation mwa

Before 1 week 1 month

Leng Thickne

3 months

CAN EFFECTIVELY INCLUDE TUMOR AND SAFETY ZONE

DEMANDS TO ACHIEVE TUMOR CONTROL IN THE TUMOR BED.

 Total necrosis of the ablated area
 Inclusion of microextensions of tumor cells in the periphery, (safetyzone)
 Strict patient selection

TUMOR SIZE - RISK OF RECURRENCE

Local Recurrence After Microwave Ablation of Lung Malignancies: A Systematic Review

David B. Nelson, MD MSc, Alda L. Tam, MD, Kyle G. Mitchell, MD, David C. Rice, MD, Reza J. Mehran, MD, Boris Sepesi, MD, Mara B. Antonoff, MD, Ara A. Vaporciyan, MD, and Wayne L. Hofstetter, MD

Departments of Thoracic and Cardiovascular Surgery, and Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas

The Society of Thoracic Surgeons

TREND: CORRELATION BETWEEN ESTIMATES OF LOCAL RECURRENCE AND YEAR OF TREATMENT. STUDIES WHERE LAST PATIENTS WERE ENROLLED IN 2011, ESTIMATES OF RECURRENCE: 22-37% FOR LAST PATIENTS ENROLLED IN 2016 THE ESTIMATES OF RECURRENCE: 9-26%

TUMOR LOCATION - RISK OF RECURRENCE Cut-off 5 cm from hilum.

Thermal Ablation of Colorectal Lung Metastases: Retrospective Comparison Among Laser-Induced Thermotherapy, Radiofrequency Ablation, and Microwave Ablation

VOGL TJ ET AL. AJR 2016;207:1340-1349

	MWA	RFA
CENTRAL LESION WITH COMPLETE ABLATION	5	3
CENTRAL LESION WITH TUMOR PROGRESSION	7	8
PERIPHERAL LESION WITH COMPLETE ABLATION	86	42
PERIPHERALLESION WITH TUMOR PROGRESSION	5	12

METASTASIS 0.5 – 5 CM

PATIENTS WITH HIGHER RISK OF COMPLICATIONS

LUNG FIBROSIS (UIP / NSIP) PREVIOUS RADIATION THERAPY IN THE AREA BULLOUS OR SEVERE EMPHYSEMA PULMONARY HYPERTENSION INFECTION/ABSCES PNEUMONONITIS PNEUMOTHORAX HEMORRHAGE

TUMOR LOCATION - RISK OF COMPLICATIONS OR INCOMPLETE ABATION

≥ 1 CM FROM:

- MAJOR AIRWAYS.
- HEART.
- LARGER VESSELS.
- PHRENIC- RECURRENT- AND BRACHIAL NERVES.
- DIAPHRAGM.

EARLY-STAGE-LUNG CANCER – CURATIVE INTENTED TREATMENT TREATMENTS STRATEGY CONSENCUS AT THE MULTI DISCIPLINARY - TUMOR BOARD.

- BIOPSY PROVEN MALIGNANCY
- EBUS BIOPSIES: NO
- NEGATIVE PET OR BIOPSY PROVEN NON-MALIGNANCY IN SUSPICIOUS CT- AND PET FINDINGS.

TREATMENT STRATEGY, EARLY STAGE LUNG CANCER

Peripheral zone: MWA or SBRT Mid zone: SBRT or MWA Central zone: SRBT

EARLY-STAGE-LUNG-CANCER FOR MWA/RFA:

- NON-SURGICAL CANDIDATES
- PRIMARY LUNG TUMOR ≤2-3 CM
- LOCAL TUMOR BED RECURRENCE AFTER RADIATION THERAPY OR SURGERY
- PATIENTS WHO REFUSE SURGERY.
 OR
- IF TOP PRIORITY IS TO PRESERVE LUNG CAPACITY.

CRYO- RFA- MWA ≤ 3 CM

STEREOTACTIC RADIATION \leq 4 CM

OUTCOME AFTER RF- AND MW-ABLATION OF PRIMARY LUNG CANCER.

			Overall survival	Disease free survival
Simon CJ	75 ptt	75% Stage 1A	1Y 2Y 3Y 5Y	local tumor progression free
2007	RFA	25% Stage 1B	78% 57% 37% 27%	rates for tumors ≤ 3 cm:
		Size: 2.7 cm (0.6-8.5 cm)	Tumors $\leq 3 \text{ cm}(5) \approx 50\%$	1Y 2Y 3Y 4Y 5Y
				83% 64% 57% 47% 47%
Lencioni R	33 ptt., 38 tumors	< 3.5 cm	All tumors Stage 1	DFS: at least 1Y follow-up: 88%
2008	RFA	Mean: 1.7 cm (0.5-3.4 cm)	1Y 2Y 2Y	(includes both primary lung
	Prospective		70% 48% 79%	cancer and metastases)
	Multi Center		Stage I, 2Y cancer specific surv: 92%	
Simon TG 2012	82 ptt	1.0-5.4 cm, mean: 2.1 cm N0-disease.	Stage 1A Stage 1B	NA
		75 ptt. stage: 1A + 1B	1Y 3Y 1Y 3Y	
			84.2% 76.1% 79% 67.3%	
Kodama K	44 ptt, 54 tumors	0.6 – 4 cm, mean: 1.7 cm± 0.9	Tumors ≤ 3 cm 3.1 – 4.0 cm	DFS: 1Y 3Y
2012	Recurrence after			76.7% 41.1%
	surgery		1Y 3Y 5Y 1Y 3Y 100% 79.8% 60.5% 33.3% 31.3%	
Dupuy DE	51 ptt., 51 tumors	≤ 3 cm, Stage 1A	All tumors tumors < 2 cm	Local recurrence free rate:
2015	RFA		1Y 2Y 2Y	1Y: 68.9%, 2Y: 59.8%
	Prospective		87.3% 69.8% 83.3%	Local recurrence within the
	Multi Center			first year did not affect survival
Palussièr J	87 ptt	Median size: 2.1 cm (1-5.4cm)	1Y 2Y 3Y 5Y	DFS: 1Y 2Y 5Y
2015	RFA + MWA (5)	N0-disease, 75% stage 1, 3%	91.9% 77.5% 66.1% 58.1%	64.5% 46.1% 27.9%
		stage 2A+3A, 22% stage IV		

BEFORE TREATMENT: OLIGOMETASTATIC LUNG DISEASE

- KNOWN PRIMARY MALIGNANT TUMOR
- BIOPSY PROVEN MALIGNANCY IN LUNG TUMOR OR BIOPSY PROVEN MALIGNANCY FROM SYNCHRONOUS METASTASES IN OTHER ORGAN E.G LIVER IN CRC.
- OR IF SMALL AND NOT SUITABLE FOR BIOPSY, WITH TUMOR GROWTH ON 2 SUCCESSIVE CT-SCANS (MIN. 25% INCREASE IN VOLUME OVER 3 MONTHS)

TREATMENT STRATEGY IN OLIGOMETASTATIC LUNG DISEASE

OLIGOMETASTATIC LUNG DISEASE FOR RF- OR MW-ABLATION:

- NON-SURGICAL CANDIDATES OR IF SURGERY FOR A SMALL METASTASIS DUE TO LOCATION MAY COST AN ENTIRE LOBE
- TUMOR **≤**3 *C***M**
- MAX 2-3 LUNG METASTASES
- OR PATIENTS WHO REFUSE TO UNDERGO SURGERY.

MWA/RFA – SRB
MWA/RFA – SRB
SRBT – MWA/RF

Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases

T. de Baère^{1*}, A. Aupérin², F. Deschamps¹, P. Chevallier³, Y. Gaubert⁴, V. Boige⁵, M. Fonck⁶, B. Escudier⁵ & J. Palussiére⁷

Departments of ¹Image Guided Therapy; ²Biostatistics, Gustave Roussy Cancer Campus, Villejuif; ³Department of Imaging, Hopital Archet 2, Nice; ⁴Department of Imaging, Hopital de la Timone, Marseille; ⁵Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif; Departments of ⁶Medical Oncology; ⁷Imaging, Institut Bergonie, Bordeaux, France

			and the second		
	Primary				
	Colon (N = 191)	Rectum (<i>N</i> = 102)	Kidney ($N = 68$)	Sarcoma ($N = 51$)	Other $(N = 154)$
Overall survival					
1 year	92.9% (1.9)	93.6% (2.5)	95.5% (2.6)	94.1% (3.3)	89.0% (2.6)
3 years	76.1% (3.7)	64.9% (6.3)	73.5% (6.5)	58.0% (8.2)	59.1% (4.6)
5 years	56.0% (6.0)	49.6% (8.4)	53.8% (9.1)	41.5% (9.3)	49.4% (6.4)
Progression-free	survival				
1 year	37.6% (3.6)	30.4% (4.8)	39.7% (5.9)	43.0% (7.0)	49.0% (4.1)
3 years	17.0% (3.0)	8.6% (3.2)	13.8% (4.9)	26.5% (6.6)	17.6% (3.4)
5 years	14.8% (3.0)	6.4% (3.0)	9.2% (5.0)	15.9% (6.2)	7.6% (3.9)
Treatment failure					
1 year	10.9% (2.4)	14.5% (3.7)	7.4% (3.2)	6.1% (3.4)	9.9% (2.5)
2 years	16.2% (3.0)	30.7% (5.7)	13.0% (5.0)	8.3% (4.0)	16.4% (3.5)
3 years	16.2% (3.0)	30.7% (5.7)	25.1% (9.3)	8.3% (4.0)	16.4% (3.5)

Table 1. Rates (standard error) of overall survival, progression-free survival and treatment failure according to the primary

Tumor size: 4-70 mm, mean: 17 mm, median: 15 mm Tumor ≤ 2 cm: 70% >2, ≤ 3 cm: 22% >3 cm: 8% 5Y OS all metastases: 51% - With-in the range of best results obtained by surgery

4Y DFS all metastases: 13.1% - call for neo-adjuvant or adjuvant chemotherapy?

Local tumor progression at the site of RFA

Effect of strict inclusion criteria

	Median OS	Size	Mean	Extrapulmon	Disease free
			number of	ary disease	interval < 12
			metastases		mo.
De Beare T					
(2015)	62 months	92% ≤ 3 cm	1.8	22%	21%
Ptt: 566		Median: 1.5 cm			
Chua TC					
(2010)	51 months	40% > 4 cm			
Ptt: 148					
Gillams A					
(2013)	41 months		3-3	51%	52%
Ptt: 122					

De Baere T et al. Annals of Oncology 26:987-991, 2015 Chua C et al. Annals of Oncology 21:2017-2022, 2010 GillamsA et al. Eur Radiol (2015) 25:3438-3454

Cryoablation

Yashiro H 2013 (1)	71 ptt. 11 primary cancer 199 metastasis Technical failures: 20,5%	Size, median: 12,8 mm Range: 3-42mm Observation time: Median 454 days (79- 2467)		Local progression free survival: 1Y 2Y 3Y 80,4% 69% 67,7% Vessel >3mm increased risk of recurrence
McDewitt JL 2016	42 ptt 19 primary cancer 24 metastasis Technical failures: 2%	21: less than 2 cm 13: 2-3 cm 13: > 3cm	OST1tumor: 1Y 2Y 3Y 100% 86% 63%	median progression free survival: 11 months
De Baere T 2015	40 ptt 60 metastasis	Mean: 1,4 cm. 48: less than 2 cm 11: 2-3 cm 1: > 3cm	Minimum 12 mo. Follow-up. 1Y OS: 97,5%	Local tumor control: 1Y: 94,2 %

(1) JVasc Interv Radiol 2013; 24:813–821, (2) JVasc Interv Radiol 2016; 27:1371–1379, (3) JThorac Oncol. 2015;10: 1468–1474

WHICH ABLATION TECHNIQUE IS SUPERIOR?

- NO EVIDENCE FOR DIFFERENCES IN TERMS OF EFFICACY OR
 COMPLICATIONS BETWEEN RFA AND MWA
- MWA HAS BETTER LOCAL TUMOR CONTROL IN RECENT
 COMPARED TO PRIMARY REPORTS
- DIFFERENT INCLUSION CRITERIAS IN STUDIES
- DIFFERENT ABLATION SYSTEMS

TREATMENT PLANNING

example: mwa

THE HIGHER EFFECT, THE BETTER?

WE RECOMMEND <u>MAX 75w</u> IN THE LUNGS.

100W: WE HAD 3 REFERRALS TO THORACIC SURGERY UNIT IN THE FIRST 12 PATIENTS

AFTER DECREASE IN EFFECT FROM 100 TO 75W WE REDUCED THE FREQUENCY FROM 25 TO 4%

TREATMENT PLANNING - LOCATION AND ABLATION NECROSIS

ABLATION CLOSE TO THE CHEST WALL WILL RESULT IN A MORE ELONGATED NECROSIS, LARGER THAN PREDICTED

Before

1 week

1 Month

3 Months

Procedural time: Positioning of antenna and MWA: 5-15 minuttes. The time consuming part is preparation and anesthesia.

Typical case: Patient arrives o8.oo Patient ready for extubation: 09.10 – 09.30. CT-FLOURO-TECHNIQUE COLLIMATION: 2.4 MM 30-50 mAS.

PHILIPS

NEDDLE PUNCTURE IN SAME RESPIRATORY PHASE, NORMALLY EXPIRATION

SMALL NODULES

In particular CRC metastasis presents hard and difficult to penetrate

QUALITY CHECK IMMIDIATELY AFTER TREATMENT THE SAFETY ZONE.

2 MIN. AFTER START OF ABLATION

4 MIN.

12 MIN. TUBE INSERTED

REPOSITION OF ANTENNA

PULL THE NEEDLE BACK AND REPOSITION WITHOUT AN ADDITIONAL PUNCTURE

PNEUMOTHORAX AND TUBE PLACEMENT

PNEUMOTHORAX AND PUNCTURE

MIGHT BE DIFFICULT TO PENETRATE THE VISCERAL PLEURA, WHICH FOLLOWS THE NEEDLE TIP INSIDE THE LUNG. COMPARABLE TO NEEDLE PUNCTURE A TENNIS BALL IN A BUCKET OF WATER.

OPTIONS:

- DRAIN WITH CATHETER AND TRY AGAIN
- SPEAR THE TUMOR

HOW TO EVALUATE LOCAL TUMOR RESPONSE AFTER THERMAL ABLATION?

Recist 1.1: 20% increase in size is Progressive Disease.

Before 1 week 1 Month 3 Months 6 Months The same temporal change in size of microwave tumor/ablation necrosis increases in size after RFA/MWA MWA MAX SIZE AFTER 7 DAYS (SWINE MODEL) model.

RFA MAX SIZE AFTER 3 MONTHS

ablation necrosis is demonstrated in a Swine

Kodama H et al Diagnostic and Interventional imaging (2019) 100, 279-285

HOW TO EVALUATE LOCAL TUMOR RESPONSE AFTER THERMAL ABLATION?

General agreement of local recurrence

- if:
- increase in size after 3 months
- new-coming nodular change
- new-coming contrast enhancement in any soft tissue focus > 9 mm
- HU-change over time in dynamic contrast evaluation by ROI placed inside the tumor
- PET-positive area within the necrosis after 6 months.
- Increase in N1 lymphnode size after 3-6 months.

Cheang S et al, Semin Interv Radiol 2013;30:157-168 Higuchi M et al, J Cancer Res Clin Oncol 2014;140:1957-1963 Bonichon F et al, Eur J Nucl Med Mol imaging 2013;40:1817-1827 Yoo DC et al, Am J Roentgenol 2011;197:334-340 Deandreis D et al, Radiology 2011;258:270-276 Suh RD et al. Radiology 2003;229(3):821-9

VISUAL ASSESSMENT OF BLOOD FLOW PATTERNS BY DYNAMIC CONTRAST ENHANCED COMPUTER TOMOGRAPHY

ı week

3 Month

6 Months

DCE-CT: 60 ml lodixanol 270 mgl/ml, scantime: 70 sec with 35 successive series of images. The series analysed by commercial available Philips software (perfusion). For an 80 kg patient the DCE-CT dose was at 4 cm coverage: 9,5 mSv and 18mSv at 8 cm.

Harders S et al. Acta Radiologica Open 6(5) 1-6, 2017

METASTATIC SPREAD FROM RENAL CELL CARCINOMA (1.generation mwa system)

10 mm lesion. Met. from leiomyosarcoma 5 min. 75W Exp. Necrosis min 3,4 cm

t:-0.5

I /ml Vol: ml Flow ml/5件

Recurrence at the tumor bed

CASE:

58 Y O Male, sublobar-resection of a squamous cell carcinoma . A adenocarcinoma appeared 9 months later and MWA was conducted . Perfusion and PET 6 months after MWA

Each, two biopsies from different tumor areas

MWA

Own experience, 3 YEARS:

~60% METASTASIS ~40% PRIMARY LUNG CANCER

	range	median	Mean
Primary	0,7-3,0 cm	1,5 cm	1,7 cm
secondary	0,5-2,3 cm	1,0 CM	1,0 CM

TUMOR CONTROL IN THE TUMOR BED: 90-95% RANGE.

COMPLICATIONS FNA/MWA

Kashima M et al AJR 2011;19

Literature: **Pneumothorax:** Specific mortality rate:

9-67% 0.4 - 2.6%

2007 - 2011, USA, National In-patient Sample

Patients	Primary lung cancer / metastases	Pneumothorax	infection	Pleural effusion	Surgical re- intervention	In-hospital mortality
3344	2072 / 1277	38.4%	5.4%	4.0%	0.9%	1.3%

Welch B et al. JVIR, June 2015

	Japan	
	Mortality, 3 interstitial pneumonitis, 1 hemothorax	0.4%
Major complications in	Aseptic pleuritis	2.3%
Rate: 9.8%	Pneumonia / lung absces	1.8/1.6%
	Pneumothorax requiring pleural sclerosis	1.6%
CRYO 15-20%	Bronchopleural fistula	0.4%
HEMORRHAGE	Brachial nerve injury	0.3%
ma M et al AJR 2011;197:W576-W580	Tumor seeding	0.1%
	Diaphragma injury	0.1%

COMPLICATIONS CRYOABLATION

SIMILAR TO FNA/MWA, BUT A HIGHER INCIDENCE OF HEMOPTYSIS (17%)

JVASC INTERV RADIOL 2016;27:1371-79

HOSPITALISATION FOLLOWING MWA – own data:

DAYS	%	ACUMMULATED %	PROLONGED HOSPITALISATION	
1	67	67	/////	
2-3	17	84	//////	< 4 days 75%,
4-7	7	92	//////	de Baere, 566 ptt.
8-14	4	96	SHOULDER PAIN, INFECTION SHOULDER PAIN, INFECTION PNEUMOTHORAX, SUBCUTANEOUS EMPHYSEMA, 1 WEEK LATER: LUNG EMBOLUS	Stage 1 NSCLC, 54 ptt. Sublobar resection: 6 days RFA: 1.8 days
15-21	2	98	PNEUMOTHORAX PLEURAL DRAINAGE, INFECTION, SHOULDER PAIN	
>22	2	100	ABSCES AND EMPYEMA PNEUMOTHORAX AND INFECTION	

6 MONTHS BEFORE

MWA

MWA BENEFITS: # NO LOSS OF LUNG FUNCTION #LOW RISK OF RIB FRACTURES IN PERIPHERAL LOCATED TUMORS # FAST # CHEAP #REPEATABLE

CONCLUSIONS

• A MINIMAL INVASIVE OPTION FOR A SELECTED GROUP OF PATIENTS WITH EARLY STAGE PRIMARY LUNG CANCER AND PULMONARY METASTASES WHICH IS A SAFE, FAST, IN-EXPENSIVE AND REPEATABLE PROCEDURE THAT PRESERVES LUNG FUNCTION WITH A LOW PROCEDURAL RISK OF RIB FRACTURES IN PERIPHERAL LOCATED TUMORS.

STRICT PATIENT SELECTION:

•BEST OUTCOME IN EARLY-STAGE-LUNG-CANCER:

 \leq 2-3 CM WITH 5Y OS up till 60%.

EXPECT 80-90% TUMOR BED CONTROL OF THE ABLATION SITE IF TUMOR ≤ 3 AND UP TILL 95% IF TUMOR ≤ 2 cm.

•IN OLIGOMETASTATIC DISEASE TO THE LUNG, BEST OUTCOME:

< 3 METASTASES, $\leq 2-3$ CM, LOW EXTEND OF EXTRA PULMONARY DISEASE, DISEASE FREE INTERVAL ≥ 12 MONTHS AND LOCATION OF PRIMARY TUMOR IN COLON OR KIDNEY.